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1 The problem
There is a well know problem of the different notations of Heisenberg-like Hamiltonians

(whether to include factor 1/2 or minus sign, whether to double count or not). The compatibility
of the reported parameters relies on the accurate description of the used model. Spin wave
theory is often build on top of the Heisenberg-like Hamiltonian. We found separate source of
the mismatch of the result, namely magnon dispersion, when using a popular package SpinW
[1] and method [10] on which the package is build. SpinW [1] results do not reproduce the
test case of 1D ferromagnetic chain, neither 3D ferromagnetic cubic crystal. In this paper we
address this mismatch.

The magnon dispersion for such systems plotted with SpinW is twice as small as the results
from textbooks [7, 2, 5, 9, 3, 6, 12] (conversion from textbook’s notations are discussed in
Appendix I). Since there are various notations for the spin hamiltonian, which is the starting
point for the magnon dispersion calculation, in this paper all results are presents with respect
to the notation of SpinW paper [10]:

H =
∑
mi,nj

ST
miJmi,njSnj +

∑
mi

ST
miAmiSmi + µBH

T
∑
mi

giSmi,

where double counting is present in the sum and negative J means ferromagnetic alignment.
First term describes exchange interaction, second – single ion anisotropy, third – external
magnetic field. The indices m, n are indexing the crystallographic unit cells (running from 1 to
L), while i and j label the magnetic atoms inside unit cell (running from 1 to N). Si is a 3× 1
column vector of spin operators {Sx

mi, S
y
mi, S

z
mi}, Jmi,nj is a matrix of exchange parameters,

Ami - matrix of single ion anisotropy, H - column vector of external magnetic field.
For the ferromagnetic 3D crystal with one magnetic center in unit cell the solution of SpinW

is:

E(k) = ℏω(k) = SJn

(
1

3
(cos(kxl) + cos(kyl) + cos(kzl))− 1

)
,

where l is the length of lattice parameters. While the textbook’s result for the same system is:

E(k) = ℏω(k) = 2SJn

(
1

3
(cos(kxl) + cos(kyl) + cos(kzl))− 1

)
. (1)

In the Fig. 1 The magnon dispersion is plotted for both solutions along the k-path specified
in [8], J = −1, S = 1, n = 6.
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Figure 1: Magnon dispersion comparison between SpinW and textbooks (J = −1, S = 1).

In the SpinW paper [10] the solution starts by the two consecutive rotations. First one
results in the rotation of the exchange matrix J ′

mi,nj = Jmi,njRn−m and the second rotation
defines the vectors u and v. These rotations do not affect the following discussion, therefore, we
drop the «′» sign in the J ′

mi,nj and use the complex valued vectors u and v, without recalling
their definition. The unique important comment is that for ferromagnetic case (oriented along
z axis) the values of the vectors are:

u = (1, i, 0)T

v = (0, 0, 1)T

The single-ion anisotropy and magnetic field can be merged into the exchange term as
explained in the SpinW paper [10].

2 The solution
In this section we present the detailed discussion of the correct result and the source of

the mismatch. First, we follow the solution of the Heisenberg Hamiltonian presented in SpinW
paper [10]. Then we discuss two method for the solution of the spin wave Hamiltonian in
subsections 2.1 and 2.2. At the end we point the source of the mismatch in the original paper
[10]. Equation (20) from the SpinW paper [10] is a starting point (where the rotation matrices
are absorbed in Jmi,nj and the «′» sign is dropped):

H =
∑
mi,nj

{√
Si

2

(
uT

i bmi + uT
i b

†
mi

)
+ vT

i (Si − b†mibmi)

}
· Jmi,nj

·

{√
Sj

2

(
ujbnj + ujb

†
nj

)
+ vj(Sj − b†njbnj)

}
,

where b†mi and bmi are the creation and annihilation operators of the local quantum spin devi-
ations. Overline denotes complex conjugate.

After the expansion the Hamiltonian has zero the energy term E0, the one-operator terms,
and the two-operator term H(2), which is the center of attention in linearised spin-wave theory.
We focus on this term, taking into account the property of the exchange matrix Jmi,nj = J i,j(d),
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d = rn − rm:

H(2) =

√
SiSj

2

(
uT

i J i,j(d)ujbmibnj + uT
i J i,j(d)ujbmib

†
nj

+ uT
i J i,j(d)ujb

†
mibnj + uT

i J i,j(d)ujb
†
mib

†
nj

)
− vT

i J i,j(d)vj

(
Sib

†
njbnj + Sjb

†
mibmi

)
The next step of the solution is to apply Fourier transformation in order to move from the

creation and annihilation operators of the local quantum spin deviations (b†mi and bmi) to the
creation and annihilation operators of the collective quantum excitations (b†i (k) and bi(k)).

bmi =
1√
L

∑
k∈B.Z.

bi(k)e
ikrm ,

b†mi =
1√
L

∑
k∈B.Z.

b†i (k)e
−ikrm ,

After the Fourier transformation the Hamiltonian has the form:

H(2) =
∑
ij

∑
k

[√
SiSj

2
uT

i J i,j(k)ujbi(k)bj(−k) +

√
SiSj

2
uT

i J i,j(k)ujbi(k)b
†
j(k)

+

√
SiSj

2
uT

i J i,j(−k)ujb
†
i (k)bj(k) +

√
SiSj

2
uT

i J i,j(−k)ujb
†
i (k)b

†
j(−k)

− Siv
T
i J i,j(0)vjb

†
j(k)bj(k) + Sjv

T
i J i,j(0)vjb

†
i (k)bi(k)

]
We follow the definitions from the equation (26) of the SpinW paper [10]:

J i,j(k) =
∑
d

J i,j(d)e
−ikd

A(k)i,j =

√
Si, Sj

2
uT

i J i,j(−k)uj,

B(k)i,j =

√
Si, Sj

2
uT

i J i,j(−k)uj,

C(k)i,j = Ci,j = δi,j
∑
l

Slv
T
i J i,l(0)vl.

Within this notation the Hamiltonian becomes:

H(2) =
∑
ij

∑
k

[
Bi,j(k)bi(k)bj(−k) + Ai,j(k)bi(k)b

†
j(k)

+ Ai,j(k)b†i (k)bj(k) +Bi,j(k)b†i (k)b
†
j(−k)

− 2Ci,jb†i (k)bj(k)
]

(2)

It is important to note, that the Hamiltonian (2) is the last point before the solution of
SpinW paper [10] differs from the solution of Colpa (subsection 2.1) or White and Bayne
(subsection 2.2).
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Next step is to rewrite the Hamiltonian in the quadratic form:

H =
∑
k?

x†(k)h(k)x(k), (3)

where
x(k) =

[
b1(k), . . . , bN(k), b

†
1(−k), . . . , b†N(−k)

]T
(4)

and (in the SpinW paper [10])

h(k) =

(
A(k)−C B(k)

B†(k) A(−k)−C

)
(5)

where † means hermitian conjugate.
The writing of the Hamiltonian in the basis (4) remind of the mathematical formalism

picture of particle and antiparticle, nevertheless, this interpretation is not physically justified.
Mathematically there is a close connection between the introduction of particle-antiparticle
picture and negative energy solutions. However, in the case of linearised spin-wave theory
(LSWT) there are no negative energy solutions. Therefore, there is no need to utilize particle-
antiparticle interpretation.

There is a question mark near the k under the sum, since that is the place where SpinW
solution and what we are going to do next differ. In the article of Colpa [4], in the textbook
by Rezende [7] (page 83) the restriction k > 0 is implied, which means that for each k in the
sum −k is not in the sum (it is not in the set of indexes over which the sum is carried out).
Alternatively, in the article of White [11] and in the textbook by White and Bayne [12] the
factor 1/2 added in front of the quadratic Hamiltonian (3) with no restriction to k, which leads
to the same result as with the restriction on k mentioned above. Finally, in the textbook [6]
one of these two details has to be implied, since the result is the same as in other sources.
However, Jensen and Mackintosh do not discuss it explicitly.

In contrary, SpinW paper [10] proceeds to cast the Hamiltonian (2) into quadratic form (3)
without any restriction on k, moreover, it is specifically noted under the sum in equation 23
that k ∈ B.Z..

In the SpinW paper the diagonalization of the quadratic form (3) follows the method by
Colpa [4]. In the code itself the diagonalization method by White [11] is mentioned. We
compare the starting points of Colpa and White with SpinW before diagonalization in the next
two subsections. In the Hamiltonian (2) only the part for the k is written explicitly for each k
under the sum. Therefore, one needs to add terms for −k in order to construct the form (6).
There are two ways to do it:

• To restrict the sum to the k > 0 and rewrite the Hamiltonian. This approach can be
interpreted as the separation of the space into k > 0 and k < 0 parts. We focus on this
approach in the subsection 2.1, where we follow the solution of Colpa [4].

• To keep the whole set of k and add
∑

−k to the Hamiltonian. This approach can be
interpreted as the artificial doubling of the k space with the consecutive multiplication
by the factor of 1/2, which keeps the Hamiltonian the same. We discuss this approach in
the subsection 2.2, where we follow the solution of White and Bayne [12].

The source of the problem with the equation (5) is discussed in the subsection 2.3.
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2.1 Colpa [4]

Colpa discusses the diagonalization of the Bogolyubov Hamiltonian of the form:

H =
m∑

r′,r=1

(
α†
r′∆1r′rαr + α†

r′∆2r′rα
†
m+r + αm+r′∆3r′rαr + αm+r′∆4r′rα

†
m+r

)
, (6)

with the following comment on the nature of the indices r and m+ r:

The reason why we consider first eq (2.1) is that it often occurs in practice [in solid-
state physics e.g. all operators with indices r correspond to the same wave vector
k, those with m+ r to −k; m denotes the number of degrees of freedom in the unit
cell (or less)]

We have exactly the situation of the solid-state physics. Note, that in the Hamiltonian (6)
the sum is carried out over m and not 2m, which means that the terms with k and −k are
written explicitly in the sum. First of all, we write the Hamiltonian in a compact form:

H(2) =
∑
ij

∑
k

[
2(Ai,j(k)− Ci,j)b†i (k)bj(k) +Bi,j(k)bi(k)bj(−k) +Bi,j(k)b†i (k)b

†
j(−k)

]
+
∑
i

∑
k

Ai,i(k) =
∑
ij

∑
k

H i,j(k) + const,

where we used the fact that A(k) is Hermitian (see Appendix II) and the commutator [bi(k)b†j(k)] =
δi,j. In the following we omit the terms of the constant energy shift. Next step is to imply
k > 0:

H(2) =
∑
ij

∑
k>0

(
H i,j(k) +H i,j(−k)

)
=

∑
ij

∑
k>0

[
2(Ai,j(k)− Ci,j)b†i (k)bj(k) +Bi,j(k)bi(k)bj(−k) +Bi,j(k)b†i (k)b

†
j(−k)

+ 2(Ai,j(−k)− Ci,j)b†i (−k)bj(−k) +Bi,j(−k)bi(−k)bj(k) +Bi,j(−k)b†i (−k)b†j(k)
]

We rewrite this Hamiltonian in the form directly comparable with the quadratic form (3)
(here the relation Bi,j(k)+Bj,i(−k) = 2Bi,j(k), the Hermicity of A(k) and Ci,j = Cj,i is used,
see Appendix II):

H(2) =
∑
ij

∑
k>0

[
2(Ai,j(k)− Ci,j)b†i (k)bj(k)

]
+ (Bj,i(k) +Bi,j(−k))bi(k)bj(−k)

+ (Bi,j(k) +Bj,i(−k))b†i (k)b
†
j(−k)

+ 2(Aj,i(−k)− Cj,i)bi(−k)b†j(−k)
]
+ const

=
∑
ij

∑
k

[
2(Ai,j(k)− Ci,j)b†i (k)bj(k)

]
+ 2Bj,i(k)bi(k)bj(−k)

+ 2Bi,j(k)b†i (k)b
†
j(−k)

+ 2(Ai,j(−k)− Ci,j)bi(−k)b†j(−k)
]
+ const
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Thus, the matrix h(k) is:

h(k) =

(
2(A(k)−C) 2B(k)

2B†(k) 2(A(−k)−C)

)
, (7)

solution of which is the same as in SpinW, but multiplied by the factor 2 and matches with the
textbook results. After the diagonalization the matrix is:

h′(k) =

(
ω(1)(k) 0

0 ω(2)(−k)

)
,

where ω is a N × N diagonal matrix. Diagonalized Hamiltonian looks like (up to a constant
term):

H(2) =
∑
i

∑
k>0

(
ω
(1)
i (k)β†

i (k)βi(k) + ω
(2)
i (−k)β†

i (−k)βi(−k)
)
,

with the magnon Hamiltonian being:

Hmagnon =
∑
i

∑
k>0

ω
(1)
i (k)β†

i (k)βi(k) +
∑
i

∑
k<0

ω
(2)
i (k)β†

i (k)βi(k).

Here the magnon dispersion is Ei(k) = ℏω(1)
i (k) for k > 0 and Ei(k) = ℏω(2)

i (k) for k < 0.
For the ferromagnetic cubic lattice:

E(k) = ℏω(1)
i (k) = ℏω(2)

i (k) = 2SJn

(
1

3
(cos(kxl) + cos(kyl) + cos(kzl))− 1

)
,

which is the same as textbook’s result.
One question remains: the nature of the restriction k > 0. It means that the «positive»

and «negative» k vectors should be separated, but it does not require any particular form of
separation. In 3D there are 3 simple non-equivalent separation, which straightforwardly comes
to mind: kx > 0, ky > 0 and kz > 0, and one could construct more. The meaning of the
separation is that if one think of the −k as k and about k as about −k, then the solution is
the same, and ω(1)(k) describes the spectra with k < 0 and ω(2) describes the part with k > 0.
Which implies ω(1)(k) = ω(2)(k) for any k and the magnon Hamiltonian could be written as:

H(2) =
∑
i

∑
k

ωi(k)β
†
i (k)βi(k),

where
ωi(k) = ω

(1)
i (k) = ω

(2)
i (k)

2.2 White and Bayne

White and Bayne discuss the diagonalization of the Hamiltonian with dipole-dipole inter-
action in the book [12]. It includes the same math and ideas as the one we need to use for the
solution of the Hamiltonian (2). The quadratic form in this case is (page 246, equation (8.41)):

H =
1

2

∑
k

x†
kHkxk (8)

And the Hamiltonian, which requires diagonalization (page 246, equation (8.40)) is:

H = E0 +
∑
k

(
Aka

†
kak +Bkaka−k +Bka

†
ka

†
−k

)
6



From those two equations one can deduct the following. The terms with aka−k and a†ka
†
−k

are introducing the coupling between +k and −k, therefore in order to solve the Hamiltonian
one has to consider the Hamiltonian for «positive» and «negative» value of each k.

First of all we rewrite the Hamiltonian in a compact form, introducing the notations for
this subsection:

H(2) =
∑
ij

∑
k

[
2(Ai,j(k)− Ci,j)b†i (k)bj(k) +Bi,j(k)bi(k)bj(−k) +Bi,j(k)b†i (k)b

†
j(−k)

]
+
∑
i

∑
k

Ai,i(k) =
∑
ij

∑
k

H i,j(k) + const

=
∑
k

H(k) + const

H(k) describe the k and its coupling with the −k, thus in order to have the quadratic form,
which describes both and their couplings (coupling of k with −k and coupling of −k with k),
one has to construct it in the following way (same as White and Bayne do):

H =
1

2

∑
k

[H(k) +H(−k)] ,

which is effectively leads to the same math as in 2.1 and results in the quadratic form (8) with
the matrix h(k) as in (7). And to the same result for the diagonalized Hamiltonian:

h′(k) =

(
ω(1)(k) 0

0 ω(2)(−k)

)
,

H(2) =
1

2

∑
i,j

∑
k

(
ω
(1)
i (k)β†

i (k)βi(k) + ω
(2)
i (−k)β†

i (−k)βi(−k)
)

With the magnon Hamiltonian to be:

Hmagnon =
∑
i,j

∑
k

1

2
(ω

(1)
i (k) + ω

(2)
i (k))β†

i (k)βi(k)

For the ferromagnetic cubic lattice:

ℏω(1)
i (k) = ℏω(2)

i (k) = 2SJn

(
1

3
(cos(kxl) + cos(kyl) + cos(kzl))− 1

)
,

E(k) = ℏ
1

2
(ω

(1)
i (k) + ω

(2)
i (k)) = 2SJn

(
1

3
(cos(kxl) + cos(kyl) + cos(kzl))− 1

)
,

which is the same as textbooks result.

2.3 SpinW solution

We suspect that the source of the mistake in SpinW paper [10] lies in the construction of
the matrix h(k). The diagonalization of the bosonic Hamiltonian with the terms mixing ±k
requires to have the term with −k, for each k, even for the negative ones. It means that for
some particular k0 one has to add the Hamiltonian for −k0 and for −k0 one is required to add
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the Hamiltonian for k0. Instead, what we suppose happened with the derivation of (5) from
(2) is the following:

H(2) =
∑
ij

∑
k

[
Bi,j(k)bi(k)bj(−k) + Ai,j(k)bi(k)b

†
j(k)

+ Ai,j(k)b†i (k)bj(k) +Bi,j(k)b†i (k)b
†
j(−k)

− 2Ci,jb†i (k)bj(k)
]

=
∑
ij

∑
k

[
Bi,j(k)bi(k)bj(−k) + Ai,j(−k)bi(−k)b†j(−k)

+ Ai,j(k)b†i (k)bj(k) +Bi,j(k)b†i (k)b
†
j(−k)

−Ci,jb†i (k)bj(k)− Ci,jb†i (−k)bj(−k)
]
,

which is algebraically correct, since −k is present in the sum for each k, however, it effectively
takes part of the H(k) Hamiltonian and substitutes it with the corresponding part of the
H(−k) Hamiltonian, which leads to the underestimation of the resulting matrix h(k) by the
factor of 2.
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3 Appendix I

3.1 Fundamentals of Magnonics [7]

In «Fundamentals of Magnonics» the derivation of magnon dispersion is done in chap-
ter 3 «Quantum Theory of Spin Waves: Magnons».

The Hamiltonian is defined on page 72, eq. 3.6 as follows:

H = −gµB

∑
i

HzS
z
i − J

∑
i,δ

S⃗i · S⃗i+δ,

where S⃗i is spin angular momentum operator as site i, <...> and δ⃗ is the vector
connecting site i with its nearest neighbors. <...> Notice also that the factor 2 in
the exchange energy does not appear explicitly because each pair of spins is counted
twice in the sum over lattice sites.

The definition of the Hamiltonian differs from SpinW with the sign, the following notation
change is necessary at the end:

J → −J

Magnon dispersion is provided on page 78 in eqs. 3.35 and 3.36

Ek = Ak = gµBHz + 2zJS(1− γk),

where γk is the structure factor given by

γk =
1

z

∑
δ⃗

eik⃗·δ⃗

where z is the number of neighbors (n in the notation of this paper). γk for the cubic system
is (it is provided on page 79 in eq. 3.37):

γk =
1

3
(cos(kxa) + cos(kya) + cos(kza))

where a is a lattice parameter (l in the notation of this paper). The final equation from the [7]
in the notation of SpinW is

ℏω(k) = 2nJS

(
1

3
(cos(kxl) + cos(kyl) + cos(kzl))− 1

)
3.2 Magnetism in condensed matter [2]

The derivation of magnon dispersion for the ferromagnetic 1D chain is discussed in the
section 6.6.6 «Magnons».

The definition of the Hamiltonian is provided on page 122 in eqs. 6.9 and 6.10:

(1) We begin with a semiclassical derivation of the spin wave dispersion. First,
recall the Hamiltonian for the Heisenberg model,

Ĥ = −
∑
⟨ij⟩

JŜi · Ŝj

(which is eqn. 6.4) In a one-dimensional chain each spin has two neighbours, so the
Hamiltonian reduces to

Ĥ = −2J
∑
i

Ŝi · Ŝi+1

9



with the comment to the equation (6.4) on the page 116 being:

where the constant J is the exchange integral and the symbol ⟨ij⟩ below the
∑

de-
notes a sum over nearest neighbours. The spins Si are treated as three-dimensional
vectors ...

The definition of the Heisenberg model is found for the first time in the section 4.2.1 on the
page 76 in eqs. 4.7 and 4.8:

This motivates the Hamiltonian of the Heisenberg model:

Ĥ = −
∑
ij

JijSi · Sj,

where Jij is the exchange constant between the ith and jth spins. The factor of 2 is
omitted because the summation includes each pair of spins twice. Another way of
writing eqn 4.7 is

Ĥ = −2
∑
i>j

JijSi · Sj,

where the i > j avoids the «double-counting» and hence the factor of two returns.
Often it is possible to take Jij to be equal to a constant J for nearest neighbours
spins and to be 0 otherwise.

The eq. 6.9 corresponds to the definition in eq. 4.7 and the eq. 6.10 corresponds to the definition
in eq. 4.8. The definition in eq. 4.7 differs from SpinW with the sign, the following notation
change is necessary at the end:

J → −J

The Hamiltonian is solved specifically for the ferromagnetic 1D chain and not for the 3D
cubic system with the final result (equation 6.20 on page 123 and equation 6.25 on page 124)

ℏω = 4JS(1− cos(qa)),

E(q) = −2NS2J + 4JS(1− cos(qa)),

Magnon dispersion from eq. 6.20 is plotted in the book on page 123 in figure 6.12 (Fig. 2).
Path from 0 to π/a is the same as the Γ-X path in Fig. 1. If the parameters J =1, S = 1 are
substituted into the eq. 6.20 then those two graphs are exactly the same.

Figure 2: Magnon dispersion plot from «Magnetism in condensed matter».
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For the cubic system eq. 6.20 in SpinW notation looks like:

ℏω(k) = 2nJS(
1

3
(cos(qxa) + cos(qya) + cos(qza))− 1)

3.3 Magnetisation oscillations and waves [5]

The derivation of magnon dispersion for the ferromagnet is discussed in the section 7.4 «El-
ements of microscopic spin-wave theory».

The definition of the Hamiltonian is provided on page 205 in eq. 7.82:

Ĥ = γℏ
∑
f

Ŝz
f −

∑
f

∑
f ′ ̸=f

Iff ′SfSf ′

where SfSf ′ = Ŝx
f Ŝ

x
f ′ + Ŝy

f Ŝ
y
f ′ + Ŝz

f Ŝ
z
f ′ .

The double counting is present in this Hamiltonian, thus the definition of the Hamiltonian
differs from SpinW with the sign, the following notation change is necessary at the end:

J → −J

The dispersion law is provided in eq. 7.99 on page 209:

where rg = rf − rf ′ , Ig ≡ Iff ′ , and the last sum is over all lattice points except one,
the initial. The Hamiltonian (7.98) has the desired form of (7.84), and

εk(k) = γℏH + 2S
∑
g

[1− exp(ikrg)]Ig.

For the cubic ferromagnet the textbook provides the figure 7.13 (Fig. 3)

(a) Original plot

2 3

k l
0

1

2

3

4

5

6

E 
/ 4

SJ
, m

eV

100
110
111

(b) Same plot with use of eq. (1)

Figure 3: Magnon dispersion plot from «Magnetisation oscillations and waves».

In this picture curve ⟨100⟩ (from 0 to π) corresponds to the path Γ-X, curve ⟨110⟩ (from 0 to
π
√
2) to the path Γ-M and curve ⟨111⟩ (from 0 to π

√
3) to the path Γ-R in the Fig. 1. In Fig. 3b

the same graph is plotted by using the equation for magnon dispersion from this paper. The
picture is produced with the script «codes/dispersion.py» using «custom_moaw» function.

The dispersion law from eq. 7.99 for the cubic system in the notation of SpinW is:

ℏω(k) = 2SIn

(
1

3
(cos(kxrx) + cos(kyry) + cos(kzrz))− 1

)
11



3.4 The Oxford Solid State Basics [9]

The derivation of magnon dispersion for the ferromagnet is discussed in the exercise 20.3
for the Chapter 20 «Spontaneous Magnetic Order: Ferro-, Antiferro-, and Ferri-Magnetism».

The definition of the Hamiltonian is provided on page 229 in eqs. 20.6 and 20.2:

Consider the Heisenberg Hamiltonian

Ĥ = −1

2

∑
⟨i,j⟩

JSi · Sj +
∑
i

gµBB · Si

and for this exercise set B = 0.

For the first time Heisenberg Hamiltonian is defined on pages 225− 226 in eq. 20.2:

Note that we have included a factor of 1/2 out front to avoid overcounting, since
the sum actually counts both Jij and Jji (which are equal to each other).

⟨...⟩
One can use brackets ⟨i, j⟩ to indicate that i and j are neighbors:

Ĥ = −1

2

∑
⟨i,j⟩

JijSi · Sj

In a uniform system where each spin is coupled to its neighbors with the same
strength, we can drop the indices from Ji,j (since they all have the same value) and
obtain the so-called Heisenberg Hamiltonian

Ĥ = −1

2

∑
⟨i,j⟩

JSi · Sj

The double counting is present in this Hamiltonia as well as the additional factor of 1/2,
thus the definition of the Hamiltonian differs from SpinW with the sign and factor 1/2, the
following notation change is necessary at the end:

J → −2J

The dispersion law for the cubic system is provided on page 230:

▷ Show that the dispersion curve for «spin-waves» of a ferromagnet is given by
ℏω = |F (k)| where

F (k) = gµb|B|+ JS (6− 2 (cos(kxa) + cos(kya) + cos(kza)))

where we assume a cubic lattice

In the notation of SpinW the dispersion law becomes:

ℏω(k) = 2JSn

(
1

3
(cos(kxl) + cos(kyl) + cos(kzl))− 1

)

12



3.5 Magnetism and magnetic materials [3]

The derivation of magnon dispersion for the ferromagnet is discussed in the section 5.4.1 «Spin
waves».

The definition of the Hamiltonian is provided on page 137 in eq. 5.24:

When there is a lattice, the Hamiltonian1 is generalized to a sum over all pairs of
atoms on lattice sites i, j:

Ĥ = −2
∑
i>j

JijSi · Sj

In this definition there is no double counting (i > j), but there is a factor of 2 present,
thus the definition of the Hamiltonian differs from SpinW with the sign, the following notation
change is necessary at the end:

J → −J

The dispersion law for the cubic system is provided on page 163:

The generalization to a three-dimensional cubic lattice with nearest-neighbour in-
teractions is

ℏωq = 2JS

[
Z −

∑
δ

cosq · δ

]
,

where the sum is over the Z vectors δ connecting the central atom to its nearest
neighbours.

In case of the cubic system Z = 6 and there are 6 nearest-neighbours with the vectors

(l, 0, 0), (0, l, 0), (0, 0, l),
(−l, 0, 0), (0,−l, 0), (0, 0,−l),

And the dispersion in notation of SpinW law becomes:

ℏωq = 2JSZ

(
1

3
(cos(qxl) + cos(qyl) + cos(qzl))− 1

)
,

3.6 Rare earth magnetism [6]

The derivation of magnon dispersion for the ferromagnet is discussed in the chapter 5 «Spin
waves in the ferromagnetic heavy rare earths».

The definition of the Hamiltonian is provided on page 186 in eq. 5.2.1:

Ĥ =
∑
i

[ ∑
l=2,4,6

B0
l Q

0
l (Ji) +B6

6Q
6
6(Ji)− gµBJi ·H

]
− 1

2

∑
i ̸=j

J (ij)Ji · Jj

In the eq. 5.2.1 crystal field and magnetic field are considered in the first sum, while the
second term represents Heisenberg Hamiltonian. There is a double counting in the sum as well
as the factor 1/2, thus the definition of the Hamiltonian differs from SpinW with the sign and
factor 1/2, the following notation change is necessary at the end:

J → −2J

The spin-wave spectra is defined on the page 190 in the eq. 5.2.22:

13



The energy parameters are

U1 =
1

2

∑
q(Eq − Aq); Eq =

√
A2

q −B2.

where Aq, A and B are defined in the eqs. 5.2.18 and 5.2.15:

A =
1

J

{
3B0

2J
(2) − 21B6

6J
(6) cos 6ϕ+ gµBJH cos(ϕ− ϕH)

}
B =

1

J

{
3B0

2J
(2) + 15B6

6J
(6) cos 6ϕ

}
.

⟨...⟩

Aq = A+ J {J (0)− J (q)}

A = 0 and B = 0 if no magnetic field nor anisotropic effects are considered. In the case of this
paper L = 0, thus J = S and the equation for the dispersion law is

Eq = S (J (0)− J (q))

J (q) is defined in the eq. 5.1.1a:

Jss′(q) =
∑

j∈s′−subl. J (ij)e−iq·(Ri−Rj); i ∈ s− sublattice,

For the cubic lattice it becomes:

J (q) = J
(
e−iqxl + eiqxl + e−iqyl + eiqyl + e−iqzl + eiqzl

)
= 2J (cos(qxl) + cos(qyl) + cos(qzl))

The dispersion in the notation of SpinW law becomes:

Eq = 2nSJ

(
1

3
(cos(qxl) + cos(qyl) + cos(qzl))− 1

)

3.7 Quantum theory of magnetism [12]

The derivation of magnon dispersion is discussed in the section 8.2.1 «Spin-waves theory».
The definition of the Hamiltonian is provided on page 238 in eq. 8.2:

Let us begin by considering a lattice of spins whose interactions may be described
by the Heisenberg exchange interaction (2.89). Suppose we apply a uniform static
field which serves to define a z-axis. We now wish to determine how this system
responds to the time- and space-dependent field H1 cos(q · r) cos(ωt). If this field
is in the x direction, the total Hamiltonian becomes

H = −
∑
i

∑
j ̸=i

JijSi · Sj + gµBH0

∑
i

Sz
i + gµBH1

∑
i

Sx
i cos(q · r) cos(ωt).

There is a double counting in the sum, thus the definition of the Hamiltonian differs from
SpinW with the sign, the following notation change is necessary at the end:

J → −J

The spin-wave spectra is defined on the page 239 in the eq. 8.10:

14



ω(k) = γH0 +
2NS

ℏ
[J(0)− J(q)].

where J(k) is defined on page 134 in the eq. 4.6:

J(−q′) ≡ 1

N

∑
i ̸=j

J(Ri −Rj)e
iq′·(ri−rj)

And the dispersion in the notation of SpinW law becomes:

ω(q) =
2nSJ

ℏ

(
1

3
(cos(qxl) + cos(qyl) + cos(qzl))− 1

)

15



4 Appendix II
First of all, we recall the definitions:

J i,j(k) =
∑
d

J i,j(d)e
−ikd

A(k)i,j =

√
Si, Sj

2
uT

i J i,j(−k)uj,

B(k)i,j =

√
Si, Sj

2
uT

i J i,j(−k)uj,

C(k)i,j = Ci,j = δi,j
∑
l

Slv
T
i J i,l(0)vl.

There are three statements, that requires proofs:

Ai,j(k) = Aj,i(k)

Bi,j(k) = Bj,i(−k)

Ci,j = Cj,i

Symmetry of the exchange between two sites (note, that transposition and the switch of
indices i, j are two different operations):

J i,j(d) = JT
j,i(−d)

which leads to the:
J i,j(k) = JT

j,i(−k)

Then:

Aj,i(k) =

√
Si, Sj

2
uT

j J j,i(k)ui =

√
Si, Sj

2
uT

j J
T
i,j(−k)ui

since Aj,i(k) is a complex number, we can transpose it, without modification of the result:

Aj,i(k) = (

√
Si, Sj

2
uT

j J
T
i,j(−k)ui)

T =

√
Si, Sj

2
uT

i J i,j(−k)uj = A(k)i,j

Second one:

Bj,i(−k) =

√
Si, Sj

2
uT

j J j,i(k)ui =

√
Si, Sj

2
uT

j J
T
i,j(−k)ui

since Bj,i(−k) is a complex number, we can transpose it, without modification of the result:

Bj,i(−k) = (

√
Si, Sj

2
uT

j J
T
i,j(−k)ui)

T =

√
Si, Sj

2
uT

i J i,j(−k)uj = B(k)i,j

Ci,j = Cj,i because of the kronecker delta in the definition.
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